Plenary Session Featuring The Fred Kavli Distinguished Lectureship in Materials Science
April 12, 2023
Sir Konstantin ‘Kostya’ Novoselov, National University of Singapore & The University of Manchester
Materials for the Future
Written by Cullen Walsh
In his keynote talk, “Materials for the Future,” Konstantin Novoselov from the National University of Singapore and the University of Manchester explored what materials of the future will look like and how we will go about producing them. He started his talk by discussing graphene, which he successfully isolated in 2004, resulting in the 2010 Nobel Prize in physics. Since then, graphene has become commonplace in commercial applications, being used in Ford cars for noise cancelation and in Huawei phones for device cooling. To facilitate these new technologies, numerous advances have occurred in the production of graphene. For instance, we can now produce high-quality graphene at production scale using techniques like chemical vapor deposition, in which gas particles are condensed into a solid, and liquid phase exfoliation.
After reviewing these advances in graphene production, the remainder of Novoselov’s talk focused on the potential of other two-dimensional (2D) materials beyond graphene. There are now dozens of these 2D crystals that range from semiconductors to insulators to superconductors. By stacking these 2D materials, we can create customizable structures with unique properties which we call van der Waals heterostructures (due to the van der Waals forces holding the layers together). We can then further customize these heterostructures by changing the relative orientation of the stacked layers, resulting in dramatic changes in the physics and chemistry of the structure. For instance, if we rotate the topmost layer of bilayer hexagonal boron nitride (hBN) by 180 degrees, we get a ferroelectric material due to a change in the dipole moment between the stacked boron and nitrogen atoms.
Now that we can create these layered materials systems on demand and control their properties, what’s next? To answer this question, Novoselov proposed a new paradigm for creating these materials systems that involves “bottom-up functionality at the material level.” Current technologies are typically top-down, meaning the components are not functional until they are assembled into a system. As a result, complexity typically comes from the top-level. This is in stark contrast to biological systems, where functionality is spread across all scales, from proteins to cells to organs. What Novoselov and his group are now researching is whether we can produce materials similarly so that we can create technologies in which the composite materials provide the functionality.
Architecting this complexity is difficult and “I don’t have the solution,” said Novoselov. However, he outlined some principles of materials design to help achieve this goal. These included creating systems with a degenerate energy landscape, similar to that of proteins, that can allow for easy conformational or property changes. To explore these complex energy landscapes, Novoselov and his collaborators have begun using custom robotic systems and artificial intelligence to predict the non-equilibrium dynamics of novel materials systems. For instance, he highlighted predictive studies being performed on smart nanocontainers that open and close based on the pH of the environment.
Overall, Novoselov emphasized the need to think about how to design functional and intelligent materials out of equilibrium for new applications. This will allow us to take materials of different dimensionalities (from 0D to 3D) and assemble them into systems that can demonstrate new properties. Using this bottom-up design approach, we could one day revolutionize two-dimensional materials technologies.
The Kavli Foundation is dedicated to advancing science for the benefit of humanity, promoting public understanding of scientific research and supporting scientists and their work.