The Rise of 2D Halide Perovskites – Symposium X speaker Aditya Mohite of Rice University
Plenary & Featured Talks available online through June 30, 2022

Symposium SF12—Bioinspired Structural Composites—Advances in Experiments, Simulations and AI-Based Design

Luke Henderson, Deakin University

Modifying Composite Interfaces to Maximize Physical Performance and Functionality

Written by Henry Quansah Afful

Carbon fiber composites (CFRP) have shown potential for use in energy storage applications such as electrodes in car batteries. “The main challenge facing carbon fibers in energy storage is their very small surface area,” says Henderson. Some approaches attempted to increase the surface area sacrifice some mechanical properties of the carbon fiber. Henderson addressed this problem by grafting a conductive polymer (polyaniline) to the carbon fiber surface using a new, relatively easier method developed in his laboratory. A reductive potential is applied to the fibers in an electrochemical bath which reduces the polymer in the electrolyte, setting up a chain of reactions to graft the polymer to the fiber surface. Henderson used this method for different polymer chemistries and layers and demonstrated an increase in the tensile strength of the composite by up to 45%. This increase was due to the reinforcement of defects on the fiber surface from the grafting. Also, this method improved the polymer adhesion on the fiber surface by up to 215% higher than what is obtained conventionally.


The comments to this entry are closed.