Symposium SB10: Micro- and Nanoengineering of Biomaterials—From Precision Medicine to Precision Agriculture and Enhanced Food Security
MRS TV speaks with MRS Attendees

Distinguished Keynote

NovoselovSir Kostya Novoselov, The University of Manchester

Materials for the Future

Written by Sophia Chen

Two-dimensional structures like graphene and hexagonal boron nitride make a versatile palette for designing next-generation materials, physicist Kostya Novoselov said in Wednesday’s keynote, titled, “Materials for the Future.”

Novoselov, now at the National University of Singapore, won the 2010 Nobel Prize in Physics for his seminal experiments characterizing the two-dimensional (2D) material graphene. Since then, graphene’s profile has risen among commercial products, both because of its desirable properties and because of its ease of production. Graphene can be found under the hood of all Ford cars, said Novoselov, where they serve noise absorption purposes. Montreal-based company ORA has made headphones with graphene for its stiffness and lightness. Huawei uses graphene films to cool their phones. Graphene is also used as an electrical resistance standard, he said.

Researchers are now pursuing new materials from stacking layers of 2D structures—not just graphene, but also boron nitride, molybdenum diselenide, and tungsten disulfide. This class of materials are broadly known as van der Waals heterostructures, as each atomically thin layer is bonded to the next via van der Waals forces. Researchers have already created LEDs with this type of structure.

A heterostructure’s properties derive from the strong interaction of many electrons between different layers. Thus, researchers can tune a heterostructure’s electronic properties by changing the order and number of layers. Researchers have found surprising materials properties from rotating one layer of atoms with respect to the other slightly. In one 2018 study, researchers created a superconductor by stacking two layers of graphene and rotating one layer by about 1.1 degrees.

Novoselov also discussed several promising future applications for two-dimensional materials. They could be used to design adaptive intelligent materials that respond to external triggers. One example might be a capsule that can open and close to deliver medicine inside the body depending on environmental conditions. Two-dimensional materials could also be used as components in a new type of computer known as neuromorphic computing, he said.

The use of two-dimensional structures could simplify the materials for our electronics. Novoselov pointed out that modern silicon-based devices use a dizzying number of elements ranging from semiconductors to metals to rare earth elements—more than those found in the human body. The increase in material complexity began around 1990, when manufacturers strived to cram more transistors on chips. Two-dimensional materials could potentially reduce the need for rare elements, as they can be oriented and stacked in many configurations to achieve a range of properties.


The comments to this entry are closed.