Symposium SB07: Bioelectrical Interfaces
People’s Choice: Science in Video Competition

Symposium MS01: Extreme Mechanics

Ali Khourshaei Shargh, University of Rochester

Atomistic Simulations of Shock Compression of Single Crystal and Core-shell Cu@Ni Nanoporous Metals

Written by Jahlani Odujole

Have you ever wondered about the characteristics of nanoporous metals and why they are useful? Ali Shargh, standing in for his research partner Niaz, offered an overview of how core-shelling can be used to enhance strength and ductility properties in materials. It has been recently discovered that nanoporous metals are light and have high surface volume. These metals have been shown to be better shock absorbers than single crystal materials. The simulation methods of Monte Carlo with the embedded atom method forcefield resulted in Shock Hugoinot plots that display shock pressure versus shock temperature. There was no recovery observed for high temperatures. As shock increased, the face-centered cubic lattice structure decreased. Shargh provided information on this purely theoretical method and how it could potentially be applied to real systems.


The comments to this entry are closed.