Symposium QN03: 2D Materials—Tunable Physical Properties, Heterostructures and Device Applications
Symposium CP04: Interfacial Science and Engineering—Mechanics, Thermodynamics, Kinetics and Chemistry

Symposium SM01: Materials for Biological and Medical Applications

Caroline Ajo-Franklin, Lawrence Berkeley National Laboratory

Living Foundations: Programming Cells to Synthesize Hierarchically Ordered Materials

Written by Gargi Joshi

Structural hierarchy found in nature imparts several survival characteristics to organisms including high toughness as observed in shells, bones, and teeth to prevent crack propagation. The components involved are a mix of hard and soft features across multiple length scales. We as researchers learn from such examples and try to mimic nature by synthesizing such materials but understanding of the key processes has not been unveiled. Caroline Ajo-Franklin is trying to assess the mechanisms by using a bottom-up synthesis of assembling engineered living systems similar to nacre (pearl from mollusks). Synthetic biology provides this scope as two strains having different properties of surface attachment were associated together by artificial engineering. The designed combination demonstrated behavior of a hydrogel similar to that in living systems. Not only this, but the behavior can be dynamically modified by altering the crosslinking densities in the hydrogel to display switchable mechanical properties.


The comments to this entry are closed.