Symposium QN04: Nanoscale Heat Transport—Fundamentals
Symposium ES04: Solid-State Electrochemical Energy Storage

Symposium CP04: Interfacial Science and Engineering—Mechanics, Thermodynamics, Kinetics and Chemistry

Shen Dillon, University of Illinois

Oxide Grain Boundary Deformation and Failure Characterized by In Situ TEM

Written by Gargi Joshi

Along with synthesis and preparation of metal oxide incorporating materials comes defects and dislocations. In this regard the grain boundaries in these metal oxides tend to significantly affect the final mechanical response. The major concern is their weak presence in the bulk, which causes deformations/fractures. The influence is observed in bulk polycrystalline measurements and poses difficulty in assessing individual contributions. Shen Dillion has done single interface measurements at a small scale using the technique of in situ TEM. This contributed in determining the fracture energies from real interfaces in the polycrystals and answers the characterization of interface mechanics. Dillon specially focused on the factors of grain boundary sliding and grain rotation inversing the stress response (Hall-Petch strengthening) in such materials.


The comments to this entry are closed.