What is the next generation of load-bearing biomedical implants?
Symposium NM12: Transitioning Quantum Dots from Benchtop to Industry

Interdisciplinary topics MRS

During this MRS spring 2018, MRS gave me the opportunity not only to attend the topic of my interest like perovskite solar cells, I also tried this year to open my mind and attend some other talks outside my "comfort zone".  

For that reason I attended the session of energy like EP04: Advanced Materials for Carbon Capture and Other Important Gas Separations (EP04.01 and EP04.02); it went well; the titles of these talks were: novel devices for the morning session and transistors reliability for the afternoon session. After that I moved on Wednesday into topics related with my material (perovskite) but now for tandem solar applications, and I attended the EN08.06: Tandem Solar Cell Integration; it went really well, due to I obtained more knowledge about it. One talk that caught more my attention was the EN08.06.04: A third option for integrating hybrid tandem solar cells-Three terminal devices, given by Emily Warren from the NREL, Golden Colorado, United States. I never had the opportunity to read about tandem solar cells with 3 contacts, so I learned a lot in here; she  mainly discuss the design and operating principles of three-terminal (3T) tandem cells fabricated by combining a III-V (GaInP or GaAs) top-cell with a 3T Si bottom cell. Also she showed some simulations done to prove that this 3 terminal will provide an efficient mechanism to capture the solar spectrum without the need to current match sub-cells (as in monolithic 2-terminal tandem) or fabricate complicated metal grids/interconnects between cells (as in 4T stacked tandem). Very interesting! 

Then I had a great opportunity given by Jiajia Lin, I could not miss it. She invited me to her talk SM05.01.04 : In Vitro Degradation and Characterization of Hydroxyapatite Coated Magnesium for Implant Application from the University of California, Riverside, Riverside, California, United States. She showed the degradation property of Hydroxyapatite (HA), which I learned it was a naturally occurring calcium-containing mineral that is enriched with magnesium, carbonate acid, phosphate, and other trace elements and it was coated Mg prepared by IonTiteTM, and it was tested in in revised simulated body fluid (rSBF) for six weeks. And with the studies she presented they found out that the HA coated Mg substrates are promising materials as bioresorabable implants for orthopedic and craniofacial applications, and confirmed the optimal IonTiteTM process conditions that could produce HA coatings on Mg with superior degradation performance. Then I also learned that bioresorbable implants are being widely used for fracture fixation in orthopaedic surgery and the market is expanding rapidly worldwide. I hope I can see Jiajia's work in the market pretty soon. 

I still have a great experience going on in my mind, why on my mind?  Well, due to now I want to know more about other materials too and probably move my research to other applications as well. I hope you had that feeling too, and you found the MRS very productive for your research and your future work. 

Thank you MRS 2018 and the speakers mentioned! 


-Araceli H.G-

Instituto de Energías Renovables, UNAM-Temixco, Morelos, Mexico. 



The comments to this entry are closed.