What is the next generation of load-bearing biomedical implants?
April 06, 2018
Dr. Huinan Liu, a professor from the University of California, Riverside, gave a talk on the next generation of load-bearing biomedical implants. Her research focuses on developing biodegradable and bioresorbable metal as well as composites materials for biomedical applications. Mg is considered because it is biodegradable and biocompatible, in which the Mg implants disappear after new tissue regeneration. The degradation rate is the key challenge for the implantable Mg. Generally, slow release of the degradation products of Mg (such as H2, Mg2+, OH-) can allow time for diffusion and metabolism. However in practical use, the fast degradation of Mg restricts its usage as implant material because the increase of local pH and release of H2 affect the cell proliferation and new tissue regeneration. In this talk, Dr. Huinan promoted several solutions such as alloying and surface treatment (ceramic coating, polymer/polymer composite coating) of the bare Mg. Moreover, in clinical use, most of the implants can easily be contaminated by bacterial and biofilm is easily grow on top of the implant which lead to fixation failure. In this case, antimicrobial coatings with anti-corrosion properties are also considered in her research.
Comments