ES14: Thin-Film Chalcogenide Semiconductor Photovoltaics
Bloggers for Spring '17 MRS Meeting

SM2: Advanced Multifunctional Fibers and Textiles

Yan-qing Lu, Nanjing University, China

Microfiber-Based Microcavities and Miniaturized Fiber Stereo Devices

Written by Akshay Phadnis

Microcavities based on optical microfibers are significant in fiber electronics because of their strong confinement, large evanescent field, flexibility, low-loss connection, and configurability. The one-dimensional (1D) approach involves methods such as Bragg grating for producing micro-cavities on the microfiber surface. Yan-qing Lu of Nanjing University explains the importance of optical force in these fibers, wherein force due momentum change of photons is considered. As compared to 1D, the three-dimensional resonator can be developed by a 2D graphene sheet coiled and put inside a 3D cavity of spiral microfibers. These kinds of special resonators, miniaturized fiber stereo device (MFSD), result in increased interaction length, with high modulation efficiency and hence find applications in optical modulation for optical signal processing. This type of miniaturized fiber stereo, in-line, all-optical modulator has potential in fiber optical communications, in which there are demands for high-speed, wideband, low-cost, and integrated methods to modulate information.


The comments to this entry are closed.