What I obtained in this MRS Meeting
CM4: In Situ Electron Microscopy of Dynamic Materials Phenomena

CM4: In Situ Electron Microscopy of Dynamic Materials Phenomena

Khalid Hattar, Sandia National Laboratories, Boise, Idaho

In situ Ion Irradiation Dynamic TEM

Written by Trevor Clark

Understanding radiation effects at a microstructural level is important on many scales. A microchip in close proximity to a nuclear reactor needs to be very reliable and components on spacecraft also have the need for reliability. Khalid Hattar of Sandia National Laboratories in Boise, Idaho is working with industry to develop setups to allow for radiation sources within a transmission electron microscope (TEM) to dynamically, in real time, view the effects of radiation on the microstructure at the nanometer scale. The radiation is ionic gold particles that are accelerated to high speeds within the machine; this means that the particle–material interactions can occur at very short time scales, on the order of 10–100s of nanoseconds. Hattar and his team have made many optimizations to retain the high spatial resolution, tune the radiation to single particle events, and have a high time resolution. The camera and detectors are optimized for stability and resolution. This set up allows for many in situ TEM experiments that will offer much needed insight into a variety of nanoscale processes.


Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name and email address are required. Email address will not be displayed with the comment.)